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The force field and Monte Carlo sampling method of our recently developed reduced

model of proteins is described. Recent applications of the models include ab initio struc-

ture prediction for small globular proteins, modeling of protein structure based on dis-

tantly homologous (or analogous) structural templates, assembly of protein structure

from sparse experimental data, and computational studies of protein folding dynamics

and thermodynamics. The newest application, described in this paper, enables the pre-

diction of low-to-moderate resolution coordinates of the parts of protein structure that are

missed in incomplete PDB files.
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In this genomic era, there is an urgent need to annotate the structure and function

[1] of the thousands of new protein sequences that have arisen from the DNA se-

quencing of various organisms, including humans [2]. Knowledge of protein struc-

tures, functions, and the nature of protein–protein interactions will result in the

elucidation of known metabolic pathways and the discovery of new pathways. As a

consequence of our better understanding of immunological responses, it will be eas-

ier to discern and implement effective mechanisms for drug delivery, genetically

modify plants to enhance their nutritional value and resist viruses, and develop new,

less invasive ways of treating of animal and human diseases while advancing biol-

ogy-based technologies.

For a fraction of cases (probably about 50% of the newly discovered proteins) se-

quence comparison alone [3] can teach us a lot about the structure and function of a

new protein [4]. When a new protein is sequentially similar to another protein of

known structure and function, it can consequently be considered strongly evolutio-

narily related. This is the domain of traditional bioinformatics and comparative mod-

eling [4–7]. The number of new protein structures is growing much faster than the

number of experimentally determined protein structures (by methods such as crystal-
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lography and NMR) in spite of an enormous effort to increase the speed of large-scale

structure determination [2]. Thus, the necessity to be able to theoretically predict pro-

tein structures from their sequences of amino acids becomes paramount [1].

Traditional tools of molecular modeling [8,9] can now simulate short-time (and

short conformational distance) protein dynamics, on the order of tens to hundreds of

nanoseconds of the real time. The time needed for a protein to fold into its unique na-

tive state from a random denatured state is much longer, and ranges from milliseconds

to minutes [10], depending on protein size, solvent conditions, and other factors. This

is true for both in vivo and in vitro protein structure assembly (in the rest of this paper

the word “structure” will be used synonymously with the term “three-dimensional

protein structure,” meaning tertiary or quaternary). Consequently, with the exception

of small peptides, large structural changes, including the protein folding process lead-

ing to structure prediction, can not be simulated by means of molecular dynamics,

Monte Carlo methods, or other conformational sampling tools on the level of the de-

tailed atomic representation of these systems.

In order to facilitate the study of protein structure dynamics and thermodynamics,

numerous attempts were undertaken to simplify the problem by reducing the number

of degrees of conformational freedom treated in an explicit way [11–29]. Some of

these protein models use an alpha carbon trace (a virtual chain connecting alpha car-

bon atoms) to mimic the conformation of the main chain. This simplification can be

rationalized by the fact that the peptide bonds are relatively rigid molecular fragments

and they are the same for all amino acids (except the relatively rare case of the

cis-proline conformation). To further speed up the simulation process, the conforma-

tional space is frequently discretized, either by discretization of the valence angles

and dihedral angles of the alpha carbon trace or (more frequently) by assuming a lat-

tice representation of the model chain [11]. Some reduced models neglect the protein

side chains, while other models assume a single sphere or a multiple united atom rep-

resentation of the side chains. The internal degrees of freedom of the side chains can

be also treated at different levels of generalization.

As a result of various levels of simplification, the emerging models differ qualita-

tively in their potential applicability to the side group representation.

In this contribution, we describe a new approach to low and moderate resolution

modeling of protein dynamics, thermodynamics, and structure prediction. Then we

outline various applications, including the study of protein folding pathways and

thermodynamics [15], ab initio folding of small proteins [20], the assembly of

multimeric proteins, the prediction of protein structures from sparse experimental

data [13], and application of the model with an extension of comparative modeling to

remotely related pairs of proteins [30]. Yet another new application is described here

in more detail. Namely, a fraction of solved protein structures are incomplete; they

miss substantial parts of the structure for various reasons – usually because it is not

visible in X ray data or because the chain tracking during the data processing was

incomplete in the protein structure prediction.
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Before we do so, let us recount the states of the field. The simplest possible model

of protein-like copolymers is most likely the cubic lattice chain with two types of resi-

dues mimicking two types of amino acids, polar and non-polar hydrophobic [31].

This model was studied in great detail and it probably reproduces some of the most

general properties of water-soluble proteins. On the other hand, some very basic fea-

tures of proteins are completely neglected in such simple models. For instance, the

important interplay between local conformational propensities (resulting in the ex-

treme stiffness of polypeptides and in the formation of secondary structure) and

long-range interactions is neglected in simple lattice models [11]. Consequently, the

application of very simple models in protein structure prediction is rather problem-

atic.

Recently, we proposed a qualitatively different approach to the reduced modeling

of protein structure and dynamics. It combines the simplicity of representation with a

relatively accurate model of protein packing. Instead of modeling the main chain in

an explicit way, we adopted the side chain representation with an implicit (not simu-

lated in a straightforward way) representation of the backbone. The model protein is

confined to a lattice and the virtual chain (with fluctuating bond length) connects the

centers of mass of the side chains in their actual rotameric state [12,13]. Such an ap-

proach has some potential advantages with respect to main-chain based models.

First, it is commonly accepted that the specificity of the intra-protein (as well as

inter-protein) interactions that determine protein three-dimensional structure is en-

coded in side chain interactions. The interactions between the main chain units are

rather generic and sequence independent. Second, having the positions of the side

chains, the reconstruction of the main chain constitutes a very simple and well-

defined task. On the contrary, rebuilding the side chains having just the alpha carbon

trace involves complicated and expensive optimization of the packing. The model

chain connecting the centers of mass of the side groups is, however, less regular and

the potentials controlling this chain have to be designed in a somewhat more elaborate

way. The benefit is that there is a single degree of conformational freedom per amino

acid that describes a convoluted motion of the main chain unit and the corresponding

side group, including the internal flexibility of the side chains. The proposed model is

applied here to rebuild and optimize these fragments using the known part of the

structure as a scaffold for the assembly of the complete structure. To estimate the

plausibility of obtained models, we also perform a test experiment on known struc-

tures from which we removed parts of the chain and then rebuilt it for comparison

with the crystallographic data. While real “blind” predictions await experimental ver-

ification, such a test procedure should provide some measure of the precision and ac-

curacy of the modeling protocol.

Methods

Protein representation. The conformations of model polypeptides are represented

by strings of virtual bonds connecting the interaction centers that correspond to the

center of mass of the side chains, including the �-carbons [12,13]. For instance, the
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center of glycine coincides with its C�, the center of alanine is located in the middle of

the C�-C� bond, the center of valine coincides with the position of the C� atom of the

side group, etc. For the larger side chains that possess internal degrees of freedom,

the interaction centers correspond to the center of mass (all heavy atoms are treated as

being the same) of the actual rotamer. These interaction centers (beads) are confined

to the underlying cubic lattice with a lattice spacing of 1.45 Å. The lattice spacing pa-

rameter defines the spatial resolution of the model. The virtual bonds resulting from

such a projection are of various lengths, depending on the identity of the two succes-

sive amino acids, the main chain conformation, and the actual rotameric state of the

side chain. In proteins, the distances between two such defined residues have a quite

broad distribution, ranging from 3.8 Å between a pair of glycines to about 10 Å for

some pairs of large side chains in their anti-parallel orientation and expanded confor-

mations. The corresponding set of lattice vectors covers this distribution with good

accuracy. The shortest vectors are in the form of (�2, �2, �1) or (�3,0,0) vectors, in-

cluding all possible permutations of the coordinates corresponding to a distance of

4.35 Å in protein structures. The longest lattice vectors are of the (�5, �2, �1) type and

their length corresponds to 7.94 Å; thus, the wings of the distribution are arbitrarily

cut off. The number of observed extreme distances is small and neglecting them

should not have any significant affect on the model accuracy. The set of the allowed

“bonds” consists of 646 vectors. To mimic a part of the hard core of the chain, each

residue occupies a cluster of the lattice points of the underlying simple cubic lattice.

Each cluster consists of 19 lattice points: the central one, six points at the positions

(�1,0,0), (0, �1,0) and (0,0,�1) with respect to the central one, and twelve points at the

positions type of (�1, �1,0). The distance of the closest approach (3 lattice units, i.e.,

1.45 Å) of two clusters nicely corresponds to the smallest values of the inter-residue

distances in real proteins. The number of possible orientations between the contact-

ing clusters is equal to 30 (vectors type (�2, �2, �1) and (�3,0,0) between their cen-

ters). Since the average “contact distances” between the side groups in folded

proteins are somewhat larger than the distance of the closest approach, there are much

more than 30 spatial orientations of two residues in contact. Consequently, the lattice

anisotropy effects are negligible. All PDB protein structures could be represented

with an average root mean square accuracy, (coordinate root-mean-square deviation

from the crystallographic coordinates) RMSD, of about 0.8 Å.

Interaction scheme. The force field for the protein model described above has been

explained in detail in our recent publications [30,32]. Here we limit ourselves to a

concise outline of various contributions to the interaction scheme. First there are ge-

neric potentials that do not depend on the sequence of amino acids. These are de-

signed to bias the model chain towards protein-like local conformational stiffness and

protein-like packing of residues that are in contact (but separated along the chain).

Thus there is a bias towards either very expanded (�-type) or compact (helix, or

turn-type) conformations [33] of the four residue fragments. Indeed, in proteins the

distribution of the corresponding distances are bimodal, reflecting the effect of sec-

ondary structure. Long-range (interactions between the residues separated along the

590 A. Kolinski, P. Rotkiewicz and J. Skolnick



chain but close in space) packing correlations are enforced by a model of the main

chain hydrogen bond network. The orientational effect of the hydrogen bonds is

translated into equivalent correlations between alpha carbon contacts (the positions

of the alpha carbons are estimated from the shape of the model chain and the average

distances between the center of interactions for a given type of amino acids and their

alpha carbons). The hydrogen bond scheme is made explicitly cooperative. There is

an additional energy gain for propagation of protein-like patterns. When taken alone,

these generic interactions will fold the model chain into a compact structure with

fluctuating (and not structurally unique) secondary structure (helices and �-sheets).

Sequence specific interactions are modeled by knowledge-based potentials of

mean force extracted from the statistical correlations seen in the database of known

protein structures. For example, a contact potential for two amino acids of a given

type could be calculated as – log (“number of observed contacts”/”number of ran-

domly expected contacts”). Other statistical potentials can be derived in a similar

way. For the short-range interactions, there are four potentials controlling the dis-

tances between residues n and m = n + k (with k = 1,2,3, and 4) with a given identity

for the flanking residues n and m. The potential between the n-th and n + 3th residue

has a chiral character; left-handed and right handed conformations are treated sepa-

rately [12]. For the long-range interactions [32,34], there are pairwise potentials of

mean force (square well, contact type), and multibody potentials simulating the hy-

drophobic effect, and thereby the effect of solvent in an averaged implicit fashion.

Sampling method. The Replica Exchange Monte Carlo (REM) sampling method

[35] is used to search for the lowest energy conformation, which should correspond to

the native (or near-native) state of the model protein. As demonstrated recently [36]

the REM method is superior to the classical simulated annealing or generalized en-

semble sampling techniques. During the REM simulations a number of copies (repli-

cas) of the system are simulated at various temperatures spanning the range between a

temperature above the folding transition and a temperature below the folding transi-

tion. The neighboring (according to the temperature) replicas are occasionally com-

pared and exchanged, according to a Metropolis type criterion. The replica exchange

process allows the copies that are trapped in local minima of the energy landscape to

go to the higher temperature, where they surmount the barriers easily. The sampling

technique for each replica between the exchange events is a standard asymmetric Me-

tropolis scheme with a proper weighting of the different states. The sampling em-

ploys a set of small local perturbations of the system conformations. The trial moves

involve one residue, two residues, or three model residues and are controlled by a

pseudorandom mechanism.

Previous applications of the model. The applications include ab initio folding, fold-

ing with a small number of experimental restraints [13], the refinement of threading

models [30], and the study of protein folding kinetics and thermodynamics [15].

The present status of the force field associated with the described lattice model

enables the ab initio folding of some small and structurally simple single domain pro-

teins [20]. The efficiency of the folding algorithm increases when the statistical
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pairwise potential and the short-range potentials are enhanced by a weighting proce-

dure based on the sequence similarity of protein fragments [32]. Due to the possibility

of becoming trapped in local minima of the very complex conformational energy

landscape, the yield of the correctly folded three-dimensional structures is never

equal to 100%. Nevertheless, for a fraction of small proteins, the proper clustering

procedure is capable of identifying the correct fold.

When some restraints obtained from various experiments (NMR, fluorescence,

crosslink experiments, etc.) are available, then the applicability of the model to struc-

ture prediction increases significantly [13]. Proteins up to 250 residues could be as-

sembled with as few as N/7 long-range restraints (known side chain contacts). The

accuracy of the obtained structures depends on the number of restraints and the size of

the protein and ranges from 2 Å to 6 Å. This could be a very useful tool for speeding up

the process of structure determination from NMR data. At the beginning, very few

signals can be used for building the low to moderate resolution model. Subsequently,

such a model may aid in the identification of other (usually very convoluted) signals.

The restraints (approximate in this case) can be also derived in a theoretical fash-

ion, via a so-called correlated mutation analysis [17], or by extraction of consensus

contacts in a threading procedure [32]. Since these restraints are never exact, the ob-

tained structures are usually of a lower resolution.

When attempting structure predictions for new proteins, three different situations

may emerge. The simplest is the situation when the protein of interest (the target pro-

tein) is highly homologous (sequence identity of 35% or more) to another protein of

already known structure (template). Since during evolution the three-dimensional

structure of proteins is more strongly conserved than the sequence, this level of se-

quence similarity means high similarity of the structures of the target and template

proteins. Thus, the template protein can be used as a scaffold for modeling the target

structure by the standard tools of comparative modeling. For very distant homologs

or when two unrelated evolutionary proteins have similar folds, it is sometimes possi-

ble to identify their similarity by a so-called threading [37] (or inverse folding) proce-

dure where the query sequence is threaded throughout the known structures and

appropriate scoring functions (usually knowledge-based potentials) are used to

rank-order the structure-sequence compatibility. When a high compatibility is de-

tected, then the resulting template can be used to build an approximate model of the

target (query) protein [38]. When neither the sequence methods nor the threading

methods are successful one must rely on less certain ab initio approaches [1,34].

The threading methods usually lead to rather poor molecular models [38–41].

The template usually differs significantly from the true structure of the target pro-

teins. Moreover, the alignment of the query sequence on the structure of the template

is often very far from the structurally optimal alignment. The standard tools of com-

parative modeling [6,7] almost never improve the starting threading models [38,39].

The obtained model structures are closer to the structure of the template than to the

structure of the target proteins. Deviations from the template are essentially random

instead of being directed into the target structure. In a recent paper we demonstrated
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that the proposed lattice model can be successfully used for restrained folding in the

spatial vicinity of the threading models. This sometimes led to qualitative improve-

ment of the model accuracy [30]. Consequently, this “generalized comparative mod-

eling approach” is expected to qualitatively extend the possibility of structural and

functional annotations of new protein sequences obtained from sequencing the

genomes of various organisms. Applications are now in progress on a genomic scale

[1].

Completing incomplete protein structures. In this paper we describe and test a new

application of the lattice modeling tool described above. For various reasons, a frac-

tion of the structures deposited in the Protein Data Bank [42] (PDB) is incomplete.

Coordinates of parts of the polypeptide chains are left undefined. Such a situation

may be related to the crystallization problems, to difficulties in the chain tracking pro-

cedure after the X-ray experiments, or to a combination of these and other factors. Al-

ternately, some of these cases may actually reflect physics – the “missed” fragment

could be more structurally mobile than the rest of the molecule. Although, even in

such a situation the more mobile fragment should have a single preferred conforma-

tion or a small number of energetically plausible conformations. Complete structures

can be very useful for the subsequent study of ligand docking, protein-protein interac-

tions, protein redesign, and so on [33].

Completing protein structures is somewhat similar to the generalized compara-

tive modeling outlined in the previous section. The incomplete structure is used as a

template. The model chain is fit to the known part of the structure and the fragment of

unknown structure (usually on the surface of the protein) is generated in a random

fashion. This provides the starting conformation that is subject to the subsequent

search for the energy minima by means of the Replica Exchange Monte Carlo algo-

rithm. During the optimization procedure, these residues that belong to the known

part of the structure are kept in close proximity to their crystallographic coordinates.

The optimized part moves without any restrictions except those related to excluded

volume and other interactions.

The simulations were performed for two sets of proteins. The first is the training

set. For five complete protein structures we ignored coordinates of a part of the chain

and compared the resulting optimized structures with the crystallographic coordi-

nates. This provides a measure of the accuracy of our algorithm. Then we performed a

similar procedure on a set of proteins that have incomplete coordinates of the folded

chain. These are “blind” predictions that await experimental verification. Recently

developed procedures allow the rebuilding of all atomic details from coordinates of

the reduced lattice models.

Results

First, the test simulations were done for a small set of globular proteins of various

size. Fragments of various length were removed from these structures and treated as

unknown. The obtained results are compiled in Table 1. There are two aspects of the
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quality of the rebuilt fragments. First, is the fidelity of the fragment itself, which is

measured by RMSD (root-mean-square deviation) from the native structure of the

fragment after the best superimposition of the modeled piece. Second, is the fidelity

of the location of the “docked” fragment in respect to the entire structure. The data

given in Table 1show that the structure of the fragment itself (see Fig. 1) is repro-

duced better than its location in the entire structure (see Figs. 2–3). Figures 2–3 show

examples of the predicted fragment location (in gray) with respect to the entire struc-

ture of the protein (in black). Here the accuracy is somewhat worse. Nevertheless, the

low-resolution structure was reproduced properly for most of the test cases.

Table 1. Compilation of the simulation data.

PROTEIN

LENGTH

GAP

LENGTH

GAPPED

RESIDUES

FRAG RMSD

SEPARATED

FRAG RMSD

IN PROTEIN*

BENCHMARK

1ctf_ 68 11 28–38 1.06 2.32

3cd4_ 178 17 128–144 2.51 3.64

1fts_ 295 25 133–157 4.30 7.43

2azaA 129 33 50–82 5.74 6.51

1ubq_ 76 15 24–38 2.77 5.52

BLIND PREDICTIONS

1ax8_ 146 13 46–59

1dekB 241 10 200–209

1dhs_ 344 17 76–92

1maz_ 221 53 28–80

* When entire structure is superimposed (all values of RMSD in Angstroms).

In the next stage, a blind prediction was done for proteins, for which indeed the

fragment of structure is unknown. The completed structures are shown in Figs. 4–7,

where the gray lines correspond to the known parts of structures, while the bold gray

lines correspond to the reconstructed fragments. The obtained models await experi-

mental verification. The model coordinates in the PDB format could be read from our

homepage (http://biocomp.chem.uw.edu.pl).
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Figure 1. Schematic drawing of the alpha carbon traces of the rebuilt fragments (in gray) superimposed

onto the corresponding fragments of the crystallographic structures for five test proteins. See

Table 1 for details.
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Figure 2. An example of fragment rebuilding for the ribosomal protein 1ctf. The black line corresponds

to the alpha carbon trace of the crystallographic structure, the gray line the reconstructed frag-

ment.

Figure 3. An example of fragment rebuilding for the N-terminal domain of the T-cell surface glyco-

protein 3cd4. The black line corresponds to the alpha carbon trace of the crystallographic struc-

ture, the gray line the reconstructed fragment.
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Figure 4. Alpha carbon trace for the 1ax8 structure. The bold fragment corresponds to the predicted part

of the structure. See Table 1 for details.

Figure 5. Alpha carbon trace for the 1dekB structure. The bold fragment corresponds to the predicted

part of the structure.



Conclusions

In this paper we described a new approach to the modeling of protein structure dy-

namics and thermodynamics. The lattice model developed during the last two years

has been already applied to a variety of problems. In particular, the new method

proved to be a very efficient tool for assembly protein structure from sparse experi-
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Figure 6. Alpha carbon trace for the 1dhs structure. The bold fragment corresponds to the predicted part

of the structure.

Figure 7. Alpha carbon trace for the 1maz structure. The bold fragment corresponds to the predicted part

of the structure.



mental data, to ab initio prediction of three dimensional structure of small proteins, to

building more accurate models from crude threading-based models and for study of

dynamics and thermodynamics of protein folding.

A newest application of the method, described in this work, enables a completion

of incomplete protein structure. In a number of protein structures deposited in the

Protein Data Bank, parts of structures are missed for various reasons. The lattice mod-

eling tool can be applied to the fast reconstruction of the approximate coordinates of

missed elements of structure. The procedure consists of several steps. First, a chain

building algorithm generates lattice approximation of the protein of interest. Then, an

approximate conformation of the missed fragment (or fragments) is built by a random

mechanism. The main part of the procedure, is the folding simulation using the Rep-

lica Exchange Monte Carlo technique, where the known parts of the structure are kept

very close to their crystallographic coordinates and the missed part moves freely, sub-

ject to chain connectivity and the force field of the model. The method was tuned and

then tested on a set of known (and complete) structures from which parts of the struc-

tures were removed and then rebuilt by the procedure outlined above. The removed

parts were always located on the protein surface, since this is a typical situation for in-

complete structures. Then the structure completion was done for proteins with gaps in

the structure. These predictions await experimental confirmation.
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